Fermat's 'primitive Solutions' and Some Arithmetic of Elliptic Curves
نویسنده
چکیده
In his work on Diophantine equations of the form y2=ax4+bx3+cx2+dx+e, Fermat introduced the notion of primitive solutions. In this expository note we intend to interpret this notion more geometrically, and explain what it means in terms of the arithmetic of elliptic curves. The specific equation y2 =x4 + 4x3 + 102 +20x+ 1 was used extensively by Fermat as an example. We illustrate the nowadays available theory and software for studying elliptic curves by completely describing the rational solutions to this equation. It turns out that the corresponding Mordell-Weil group is free of rank 2; we obtain generators of this group.
منابع مشابه
Triangular numbers and elliptic curves
Some arithmetic of elliptic curves and theory of elliptic surfaces is used to find all rational solutions (r, s, t) in the function field Q(m, n) of the pair of equations r(r + 1)/2 = ms(s + 1)/2 r(r + 1)/2 = nt(t + 1)/2. } It turns out that infinitely many solutions exist. Several examples will be given.
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملELLIPTIC FUNCTIONS AND ELLIPTIC CURVES (A Classical Introduction)
(0.0) Elliptic curves are perhaps the simplest 'non-elementary' mathematical objects. In this course we are going to investigate them from several perspectives: analytic (= function-theoretic), geometric and arithmetic. Let us begin by drawing some parallels to the 'elementary' theory, well-known from the undergraduate curriculum. Elementary theory This course arcsin, arccos elliptic integrals ...
متن کاملArithmetic progressions on Huff curves
We look at arithmetic progressions on elliptic curves known as Huff curves. By an arithmetic progression on an elliptic curve, we mean that either the x or y-coordinates of a sequence of rational points on the curve form an arithmetic progression. Previous work has found arithmetic progressions on Weierstrass curves, quartic curves, Edwards curves, and genus 2 curves. We find an infinite number...
متن کاملLocal diophantine properties of modular curves of D-elliptic sheaves
We study the existence of rational points on modular curves of D-elliptic sheaves over local fields and the structure of special fibres of these curves. We discuss some applications which include finding presentations for arithmetic groups arising from quaternion algebras, finding the equations of modular curves of D-elliptic sheaves, and constructing curves violating the Hasse principle.
متن کامل